

The Influence of Hyaluronic Acid on Friction and Lubrication of Fascia

A journey into the hidden magic of human movement — where hyaluronic acid meets fascia.

Under the supervision of Prof. Martin Vrbka and Assoc. Prof. David Nečas.

Presented By Alexandra Streďanská

Introduction

- Widespread musculoskeletal condition.
- Affects people across all age groups and occupations.
- A **leading cause** of disability and reduced mobility.
- Common causes include poor posture, injury, and aging-related degeneration.
- Has **significant** personal, social, and economic **impacts**.

Motivation

8 in 10

will experience back pain in their lifetime

5%

of people struggling with back pain will go on to develop chronic back pain

619 million

people around world are affected by back pain

hundreds of bn

(USD) is the annual cost of back pain to the state economy

Problems

~25-50%

~20-50%

TLF thickness is increased

TLF shear strain is reduced

30% of spinal load TLF can transmit up to

Problems

First Problem
non-specific low back pain

Thoracodorsal Fascia Good Side Bad Side

Active muscle contraction...

Problems

Literary Review

Literary Review – 1

Thoracolumbar fascia and low back pain therapies

Literary Review - 2

Hyaluronic acid and its role within the fascia friction

Literary Review - 3

Biotribological models and friction of compliant contacts

Literary Review - 1

- What is TLF?
- Why it is conected to non-specific low back pain?
- Fascial therapy?

Literary Review – 1

Thoracolumbar fascia and low back pain therapies

Literary Review – 2

Hyaluronic acid and its role within the fascia friction

Literary Review - 3

Biotribological models and friction of compliant contacts

Literary Review - 1

- What is TLF?
- Why it is conected to non-specific low back pain?
- Fascial therapy?

Literary Review - 1

Thoracolumbar fascia and low back pain therapies

Literature gap

Non-specific lower back pain

Urgent need to address its diagnosis and seek effective therapeutic solutions.

Hyaluronic acid Literary Review-2

- high biocompatibility
- naturally occurring

- knee viscosupplementation
- treatment of limb stiffness
- skincare

- rapid half-time
- chemical modification
- derivatives of HA

 properties depend on molecular weight and concentration

Hyaluronic acid Literary Review-2

- high biocompatibility
- naturally occurring

- knee viscosupplementation
- treatment of limb stiffness
- skincare

- rapid half-time
- chemical modification
- derivatives of HA

 properties depend on molecular weight and concentration

Hyaluronic acid Literary Review-2

- high biocompatibility
- naturally occurring

- knee viscosupplementation
- treatment of limb stiffness
- skincare

- rapid half-time
- chemical modification
- derivatives of HA

 properties depend on molecular weight and concentration

naturally occurring

Hyaluronic acid Literary Review-2

molecular weight and concentration

- knee viscosupplementation
- treatment of limb stiffness
- skincare

- rapid half-time
- chemical modification
- derivatives of HA

Literary Review-2

Modification Viscoelasticity and Viscosity

- on rapid half-time
 - chemical modification
 - derivatives of HA

 properties depend on molecular weight and concentration

Literature gap

Hyaluronic acid

Optimal properties of HA for reducing fascial friction and adhesion remain unknown.

Biotribological models and friction of compliant contacts Literary Review-3

- artificial polymers, elastomers
- animal and cadaver tissues
- eyes, tongue, tendons etc.

- softer-high friction
- elasticity decreases sliding friction increases, rolling friction levels off
- reduces adhesion in stiff materials
- increases adhesion in soft materials

- lower contact angle less friction
- rougher surface higher speed for full-film transition

Biotribological models and friction of compliant contacts Literary Review-3

- artificial polymers, elastomers
- animal and cadaver tissues
- eyes, tongue, tendons etc.

- softer-high friction
- elasticity decreases sliding friction increases, rolling friction levels off
- reduces adhesion in stiff materials
- increases adhesion in soft materials

- lower contact angle less friction
- rougher surface higher speed for full-film transition

Biotribological models and friction of compliant contacts Literary Review-3

- artificial polymers, elastomers
- animal and cadaver tissues
- eyes, tongue, tendons etc.

- softer-high friction
- elasticity decreases sliding friction increases, rolling friction levels off
- reduces adhesion in stiff materials
- increases adhesion in soft materials

- lower contact angle less friction
- rougher surface higher speed for full-film transition

Biotribological models and friction of compliant contacts Literary Review-3

- artificial polymers, elastomers
- animal and cadaver tissues
- eyes, tongue, tendons etc.

- softer-high friction
- elasticity decreases sliding friction increases, rolling friction levels off
- reduces adhesion in stiff materials
- increases adhesion in soft materials

- lower contact angle less friction
- rougher surface higher speed for full-film transition

Biotribological models and friction of compliant contacts Literary Review-3

Roughness

Wettability and Contact Angle

- reduces adhesion in stiff materials
- increases adhesion in soft materials

- lower contact angle less friction
- rougher surface higher speed for full-film transition

Literature gap

Tribological model

No research to date has specifically addressed TLF or utilized a tribological model for fascial tissues.

Objectives

DEVELOPMENT

tribological model of fascial layers and underlying muscle

TO STUDY

effect of properties of hyaluronic acid solutions on the model

3 TO DEFINE

optimal properties of HA leading to decreasing friction

4_{TO HELP}

people to live without low back pain thanks to our HAbased treatment

Questions & Hypothesis

Q1: What material parameters are crucial in developing a tribological model to accurately simulate fascial tissues and reliably identify the adhesive mechanisms in pathological conditions?

H1: mechanical properties (elastic modulus, tensile strength, viscoelasticity), surface characteristics (roughness, energy), and frictional behavior (COF, HA-based lubrication).

Q2: What is the mechanism of friction reduction of HA lubricated adhesive fascial tissue induced by various solution compositions?

H2: HA molecular weight and concentration, interaction with collagen fibers

Machines

Bruker UMT TriboLab

Discovery HR-30 rheometer

MIRA3

Models

Pin: PDMS 10, 20, 30, 40, 50 ShA **Plate:** PDMS 10, 20, 30, 40, 50 ShA

Pin: PDMS 10 ShA (muscle) PU foil 75 Sh00 (fascia) Plate: PDMS 10 ShA (muscle) PU foil 75 Sh00 (fascia)

Pin: PDMS 10 ShA Plate: PU foil 30 Sh00

Pin: PDMS 10 ShA (muscle)
PVA hydrogel (fascia)
Plate: PDMS 10 ShA (muscle)
PVA hydrogel (fascia)

Pin: PDMS 10 ShA (muscle) rabbit fascia Plate: PDMS 10 ShA (muscle) rabbit fascia

Pin: PDMS 10 ShA (muscle) synthetic fascia Plate: PDMS 10 ShA (muscle) synthetic fascia

A B C D E

MW of 101, 316, 610, 2000 kDa; conc. 2%

MW of 316 kDa; conc. 1%

Lubricants

HA-RED - MW of 275 kDa; conc. 2%

HA-C12 - MW of 318 kDa; conc. 0.3%

Thesis layout

Hyaluronic acid properties scale estimation (Study II)

Phase - 2

The influence of material hardness and motion speed on fascia model friction (Study I)

Tribological model development (Study III)

Phase - 4

Hyaluronic acid frictional properties (Study III and Study IV)

The influence of material hardness and motion speed on fascia model friction

Hyaluronic acid properties estimation

The effect of pin geometry

The most rigid model PDMS-PDMS

The most compliant model PDMS-Phantom

Testing of friction in fascia models

The effect of fascia prestressing

The effect of fascia prestressing

Native forms vs HA derivatives

Scientific outcomes

- Tribological models enable controlled testing without biological tissue
- Material stiffness affects friction more than contact area
- Lower MW HA provides superior lubrication
- Collagen structure of the fascia improves HA lubrication
- Chemical derivation matters but...

Conclusion

The optimal HA for fascial viscosupplementation should be:

- Low to medium MW (101–316 kDa)
- Moderate concentration (10 mg/ml)
- Stable long-term performance
- Compatible with collagen-rich tissues
- Biocompatible with prolonged retention

Conclusion

STREĎANSKÁ, A., D. NEČAS, M. VRBKA, I. KŘUPKA, M. HARTL, E. TOROPITSYN, J. HUSBY. Development of Tribological Model of Human Fascia: The Influence of Material Hardness and Motion Speed. Biotribology, Volume 30, 2022, ISSN 2352-5738.

[CiteScore - 3.9]. (Author's contribution 53%)

[Citescore - 3.9]. (Addition's Continuation 53%)

NEŠPOROVÁ, K., J. MATONOHOVÁ, J. HUSBY, E. TOROPITSYN, L. DIVOKÁ STUPECKÁ, A. HUSBY, T. SUCHÁNKOVÁ KLEPLOVÁ, **A. STREĎANSKÁ**, M. ŠIMEK, D. NEČAS, M. VRBKA, R. SCHLEIP, V. VELEBNÝ. Injecting hyaluronan in the thoracolumbar fascia: A model study. International Journal of Biological Macromolecules, Volume 253, Part 3, 2023. ISSN 0141-8130.

[IF = 7,7]. (Author's contribution 20%)

STREĎANSKÁ, A., D. NEČAS, M. VRBKA, J. SUCHÁNEK, J. MATONOHOVÁ, E. TOROPITSYN, M. HARTL, I. KŘUPKA, K. NEŠPOROVÁ. Understanding frictional behavior in fascia tissues through tribological modeling and material substitution, Journal of the Mechanical Behavior of Biomedical Materials, Volume 155, 2024, 106566, ISSN 1751-6161. [IF = 3,3]. (Author's contribution 47%)

STREĎANSKÁ, A., M. ŠIMEK, J. MATONOHOVÁ, D. NEČAS, M. VRBKA, J. SUCHÁNEK, V. PAVLIŇÁKOVÁ, L. VOJTOVÁ, M. HARTL, I. KŘUPKA, K. NEŠPOROVÁ. Optimizing Hyaluronan-Based Lubricants for Treating Thoracolumbar Fascia Pathologies: Insights from Tribological and Pharmacokinetic Studies, Lubricants 2025, 13, 184. [IF = 3,1]. (Author's contribution 35%)

Conclusion

Conferences

5th International Conferece of BioTribology (ICOBT) 2021 - online - live and on-demand

• poster - Best Poster Award - 1st price

Nordic Tribology Symphosium (NordTrib) 2022 - Aalesund, Norway

oral presentation

International Tribology Conference (ITC) 2023 - Fukuoka, Japan

oral presentation

Internships

09/2021 (1 month) **Contipro**, Dolní Dobrouč, Czechia

05/2023 (1 month) **University of Groningen**, Groningen, Netherlands

05-09/2024 (5 month) Kyushu University, Fukuoka, Japan

Thank You Solving Much

Email Address:

alexandra.stredanska@vut.cz